Computational solvent mapping reveals the importance of local conformational changes for broad substrate specificity in mammalian cytochromes P450.

نویسندگان

  • Karl H Clodfelter
  • David J Waxman
  • Sandor Vajda
چکیده

Computational solvent mapping moves small organic molecules as probes around a protein surface, finds favorable binding positions, clusters the conformations, and ranks the clusters on the basis of their average free energy. Prior mapping studies of enzymes, crystallized in either substrate-free or substrate-bound form, have shown that the largest number of solvent probe clusters invariably overlaps in the active site. We have applied this method to five cytochromes P450. As expected, the mapping of two bacterial P450s, P450 cam (CYP101) and P450 BM-3 (CYP102), identified the substrate-binding sites in both ligand-bound and ligand-free P450 structures. However, the mapping finds the active site only in the ligand-bound structures of the three mammalian P450s, 2C5, 2C9, and 2B4. Thus, despite the large cavities seen in the unbound structures of these enzymes, the features required for binding small molecules are formed only in the process of substrate binding. The ability of adjusting their binding sites to substrates that differ in size, shape, and polarity is likely to be responsible for the broad substrate specificity of these mammalian P450s. Similar behavior was seen at "hot spots" of protein-protein interfaces that can also bind small molecules in grooves created by induced fit. In addition, the binding of S-warfarin to P450 2C9 creates a high-affinity site for a second ligand, which may help to explain the prevalence of drug-drug interactions involving this and other mammalian P450s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution.

The xenobiotic metabolizing cytochromes P450 (P450s) are among the most versatile biological catalysts known, but knowledge of the structural basis for their broad substrate specificity has been limited. P450 2B4 has been frequently used as an experimental model for biochemical and biophysical studies of these membrane proteins. A 1.6-A crystal structure of P450 2B4 reveals a large open cleft t...

متن کامل

Three clusters of conformational states in p450cam reveal a multistep pathway for closing of the substrate access channel.

Conformational changes in the substrate access channel have been observed for several forms of cytochrome P450, but the extent of conformational plasticity exhibited by a given isozyme has not been completely characterized. Here we present crystal structures of P450cam bound to a library of 12 active site probes containing a substrate analogue tethered to a variable linker. The structures provi...

متن کامل

Protein dynamics in cytochrome P450 molecular recognition and substrate specificity using 2D IR vibrational echo spectroscopy.

Cytochrome (cyt) P450s hydroxylate a variety of substrates that can differ widely in their chemical structure. The importance of these enzymes in drug metabolism and other biological processes has motivated the study of the factors that enable their activity on diverse classes of molecules. Protein dynamics have been implicated in cyt P450 substrate specificity. Here, 2D IR vibrational echo spe...

متن کامل

Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel.

P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does...

متن کامل

تعیین اپی توپ های ناپیوسته زنجیره سبک ایمونوگلوبولین انسان توسط ایمونولوژی محاسبه ای

Background: Immunoglobulins are a group of proteins that have important role in defense against microorganisms. Immunoglobulins consist of heavy and light chains. In human, immunoglobulin light chain comprises of two isotypes: Kappa (K) and lambda (λ) based on amino acid differences in carboxylic end of their constant region. Marked changes in the K to λ ratio can happen in monocl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 45 31  شماره 

صفحات  -

تاریخ انتشار 2006